


Foreword

I've been using, and a big advocate for CSS since before it was even a

standard, nearly 25 years.

It's hard to convey what a profound change it brought in developing for the web

when introduced, although its widespread adoption took years of the technology

maturing in browsers, and of advocacy, changing the long established use of tables

for page layout, font elements, and other hacks web developers came up with to

design for the Web.

Since then, CSS has matured in ways its originators and early adopters could barely

imagine and brings developers incredible power. But this power and complexity

come at a cost.

When developing with CSS, I sometimes think of the story of "]e

Sorcerer's Apprentice" (originally a poem by German Romantic poet Goethe, but

made famous by Mickey Mouse in the Disney ^lm Fantasia). ]e

Sorcerer's Apprentice gains access to his wizard master's powers, but unable to

wield them correctly, causes mayhem.

Which sounds like a lot of developing with CSS to me!

]e Cascade, Speci^city, Inheritance are all powerful features of CSS, but also

cause many of the problems we associate with the language.

Which is why I'm surprised it's taken so long for someone to really address the

signi^cant challenges of debugging CSS. And why I'm excited for Ahmad's new

book, which addresses this important topic in detail.

I really recommend this to any web developer, it's long over due!

John Allsopp — Web Directions
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Let’s face it: ]e process of debugging CSS is not straightforward, because there

is no direct or clear way to debug a CSS problem. In this book, you will learn

how to sharpen your debugging CSS skills.

For traditional programming languages, such as Java, C, and PHP, the

techniques of debugging have evolved over the years. ]at is not the case with

CSS. Debugging CSS is not like debugging a programing language because you

won’t be alerted to errors at compilation time. You would get silent errors,

which are not helpful.

Before debugging a CSS error, you need to spot it ^rst. In some cases, you

might receive a report from a colleague that there is a bug to be solved. Finding

a CSS bug can be hard because there is no direct way to do it. Even for an

experienced CSS developer, debugging and ^nding CSS issues can be hard and

confusing.

]is chapter will discuss:

• the history of debugging CSS,

• what has changed today,

• what debugging CSS means,

• the debugging mindset,

• why debugging needs time,

• an overview of this book’s topics.

The History of Debugging CSS

Because this book is about debugging and ^nding CSS issues, you should be

aware of a bit of the history of how debugging tools for CSS have developed

over the years.

1. Introduction and Overview
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Style Master

You might be surprised to hear that the ^rst CSS debugging tool was released

in 1998 — 22 years ago! Its creators, John Allsopp and Maxine Sherrin, named

it Style Master. As they described it:

Style Master is the leading cross-platform CSS development tool. Much

more than just a text editor, Style Master supports your work_ow —

including: creating style sheets based on your HTML; live CSS editing of

PHP, ASP.NET, Ruby and other dynamically generated sites; editing CSS

via ftp; and much, much more.

]e goal of Style Master was to make working with CSS more eacient, more

productive, and more enjoyable. As you can see, then, debugging CSS has been

a topic of interest to developers for a long time.

1. Introduction and Overview
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Every modern web browser has development tools, or DevTools, built in. In

the history section, I explained a bit about the tools Style Master and Firebug.

Browser DevTools are based on these projects. To open yours, right-click and

select “Inspect element” from the menu. If you’re a keyboard person, here are

the shortcuts for each browser:

• Chrome: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

• Firefox: ⌥ + ⌘ + C on a Mac, and Ctrl + Shift + I on Windows

• Safari: ⌥ + ⌘ + I

• Edge: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

I will be using Google Chrome in this book, unless I mention another web

browser.

You can inspect any element and toggle its CSS properties. To select an

element, right-click and choose “Inspect” from the menu.

When you select “Inspect”, the browser’s DevTools will open at the bottom of

the screen. ]at’s the default position for it. You can pin it to the right or left

side of the screen by clicking on the dots icon in the top right.

3. Debugging Environments and Tools
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With the dots clicked, a little dropdown menu will open. You can choose where

to pin the DevTools. ]ere is no right place; choose based on your preference.

However, you will need to dock it to the right when you are testing at mobile

and tablet sizes. ]is is how it looks:

Toggling a CSS Declaration

We’ve opened the DevTools and know how to access them. Let’s inspect an

3. Debugging Environments and Tools
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span {
padding-top: 1rem;
padding-bottom: 1rem;

}

]is won’t work. Vertical padding doesn’t work for inline elements. You would

have to change the element’s display property to inline-block or block .

]e same goes for margin :

span {
margin-top: 1rem;
margin-bottom: 1rem;

}

]is margin won’t have an e`ect. You would have to change the display type

to inline-block or block .

Spacing and Inline Elements

Each inline element is treated as a word. Take the following:

4. CSS Properties That Commonly Lead to Bugs
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<span>Hello</span>
<span>World</span>

]is will render Hello World . Notice the spacing between the two words.

Where did this come from? Well, because an inline element is treated as a

word, the browser automatically adds a space between words — just like there

is a space between each word when you type a sentence.

]is gets more interesting when we have a group of links:

]e links are next to each other, with a space between them. ]ose spaces

might cause confusion when you’re dealing with inline or inline-block

elements because they are not from the CSS — the spaces appear because the

links are inline elements.

Suppose we have an inline list of category tags, and we want a space of 8 pixels

between them.

<ul>
<li class="tag"><a href="#">Food</a></li>
<li class="tag"><a href="#">Technology</a></li>
<li class="tag"><a href="#">Design</a></li>

</ul>

In the CSS, we would add the spacing like this:

4. CSS Properties That Commonly Lead to Bugs
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.tag {
display: inline-block;
margin-right: 8px;

}

You would expect that the space between them would equal 8 pixels, right?

]is is not the case. ]e spacing would be 8 pixels plus an additional 1 pixel
from the character spacing mentioned previously. Here is how to solve this

issue:

ul {
display: flex;
flex-wrap: wrap;

}

By adding display: flex the the parent, the additional spacing will be gone.

Block Elements

]e block display type is the default for certain HTML elements, such as div ,

p , section , and article . In some cases, we might need to apply the block

display type because an element is inline, such as:

• form labels and inputs,

• span and a elements.

When display: block is applied to span or a , it will work ^ne. However,

when it’s applied to an input, it won’t a`ect the element as expected.

4. CSS Properties That Commonly Lead to Bugs
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input[type="email"] {
display: block; /* The element does not take up the full width. */

}

]e reason is that form elements are replaced elements. What is a replaced

element? It’s an HTML element whose width and height are prede^ned,

without CSS.

To override that behavior, we need to force a full width on the form element.

input[type="email"] {
display: block;
width: 100%;

}

]ere are replaced elements other than form inputs, including video , img ,

iframe , br , and hr . Here are some interesting facts about replaced

elements:

• It’s not possible to use pseudo-elements with replaced elements. For

example, adding an :after pseudo-element to an input is not possible.

• ]e default size of a replaced element is 300 by 150 pixels. If your page

has an img or an iframe and it doesn’t load for some reason, the browser

will give it this default size.

Consider the following example:

4. CSS Properties That Commonly Lead to Bugs
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height: 0 is set on the element.

Transitioning Visibility and Display

Transitioning the display property of an element is not possible. However,

we can combine the visibility and opacity properties to mimic hiding an

element in an accessible way.

Here we have a menu that should be shown on mouse hover and keyboard

focus. If we used only opacity to hide it, then the menu would still be there

and its links clickable (though invisible). ]is behavior will inevitably lead to

confusion. A better solution would be to use something like the following:

.menu {
opacity: 0;
visibility: hidden;
transition: opacity 0.3s ease-out, visibility 0.3s ease-out;

}

.menu-wrapper:hover .menu {
opacity: 1;
visibility: visible;

}

4. CSS Properties That Commonly Lead to Bugs
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random bugs on Safari iOS.

Inline-Block Elements With overflow: hidden

According to the CSS speci^cation:

]e baseline of an “inline-block” is the baseline of its last line box in the

normal _ow unless it has either no in-_ow line boxes or if its “over_ow”

property has a computed value other than “visible”, in which case the

baseline is the bottom margin edge.

When an inline-block element has an overflow value other than visible ,

this will cause the bottom edge of the element to be aligned according to the

text baseline of its siblings.

To solve this, change the alignment of the button that has overflow: hidden .

.button {
vertical-align: top;

}

4. CSS Properties That Commonly Lead to Bugs
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]e d-block class sets the element to display as a block type. Adding

!important ensures it will be applied as expected.

Flexbox

]e _exbox layout module provides us with a way to lay out a group of items

either horizontally or vertically. ]ere are many common issues with _exbox:

Some are done mistakenly by the developer, and others are bugs in a browser’s

implementation.

User-Made Bugs

Forgetting flex-wrap

When setting an element as a wrapper for _exbox items, it’s easy to forget

about how the items should wrap. Once you shrink the viewport, you notice

horizontal scrolling. ]e reason is that _exbox doesn’t wrap by default.

<div class="section">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.section { display: flex; }

4. CSS Properties That Commonly Lead to Bugs
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Notice how the items aren’t wrapping onto a new line, thus causing horizontal

scrolling. ]at is not good. Always make sure to add flex-wrap: wrap .

.section {
display: flex;
flex-wrap: wrap;

}

Using justify-content: space-between for Spacing

When we use _exbox to make, say, a grid of cards, using justify-content:

space-between can be tricky.

4. CSS Properties That Commonly Lead to Bugs
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]e grid of cards above is given space-between , but notice how the last row

looks weird? Well, the designer assumed that the number of cards would

always be a multiple of four (4, 8, 12, etc.).

CSS grid is recommended for such a purpose. However, If you don’t have any

option but to use _exbox to create a grid, here are some solutions you can use.

Using Padding and Negative Margin

<div class="grid">
<div class="grid-item">

<div class="card"></div>
</div>
<!-- + 7 more cards -->

</div>

4. CSS Properties That Commonly Lead to Bugs
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.recipe { display: flex; }

img { width: 50%; }

A simple online search reveals that this issue is common, and it has

inconsistent browser behavior. ]e only browser that still stretches an image

by default is Safari version 13. To ^x it, we need to reset the alignment of the

image itself.

.recipe img { align-self: flex-start; }

While Safari version 13 is the only one that has the inconsistent behavior of

stretching the image, the button element is stretched in all browsers. ]e ^x

is the same ( align-self: flex-start ), but small details like this make you

think about the weirdness of browsers.

We see a related problem when a _ex wrapper has its direction set to column .

<div class="card">
<h2 class="card__title"></h2>
<p class="card__desc"></p>
<span class="card__category"></span>

</div>

4. CSS Properties That Commonly Lead to Bugs
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.card {
display: flex;
flex-direction: column;

}

]e .card__category element will stretch to take up the full width of its

parent. If this behavior is not intended, then you’ll need to use align-self to

force the span element to be as wide as its content.

.card__category {
align-self: flex-start;

}

Flexbox Child Items Are Not Equal in Width

A common struggle is getting _exbox child items to be equal in width.

According to the speci^cation:
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]e great thing is that the “_ex” label is clickable. When it’s clicked, Firefox will

highlight the _ex layout items. It can also be accessed from the little _exbox

icon beside the CSS declaration in the “Rules” panel.

]e highlight is useful when you’re in doubt of how a _exbox layout works.

Take advantage of these tools — they enable you to make sure that nothing

weird is happening and clear up any confusion about a _exbox container.

4. CSS Properties That Commonly Lead to Bugs
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CSS Grid

Unintentional Implicit Tracks

A common misstep with CSS grid is to create an additional grid track by

placing an item outside of the grid’s explicit boundaries. First, what’s the

di`erence between an implicit and explicit grid?

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr;

}

.item-1 {
grid-column: 1 / 2;

}

.item-2 {
grid-column: 3 / 4;

}
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]e .item-1 element has an implicit grid track, and it’s placed within the

grid’s boundaries. ]e .item-2 element has an explicit grid track, which

places the element outside of the de^ned grid.

CSS grid allows this. ]e problem is when a developer is not aware that an

implicit grid track has been created. Make sure to use the correct values for

grid-column or grid-row when working with CSS grid.

A Column With 1fr Computes to Zero

]ere is a case in which a column with 1fr will compute to a width of 0 ,

which means it’s invisible.

<div class="wrapper">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.wrapper {
display: grid;
grid-template-columns: repeat(3, minmax(50px, 200px)) 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

We have three items with a minimum of 50 pixels and a maximum of 200

pixels. ]e last item should take the remaining space, 1fr . If the sum of the

widths of the ^rst three items is less than 600 pixels, then the last column will

be invisible if:
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• it has no content at all,

• it has no border or padding.

Keep that in mind when working with CSS grid. ]is issue might be confusing

at ^rst, but when you understand how it works, you’ll be ^ne.

Equal 1fr Columns

You might think that the CSS grid fraction unit, fr , works as a percentage. It

doesn’t.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">Item 2</div>
<div class="item">Item 3</div>

</div>
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.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

]e items look equal. However, when one of them has a very long word, its

width will expand.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">I’m special because I have

averylongwordthatmightmakemebiggerthanmysiblings.</div>
<div class="item">Item 3</div>

</div>

Why does this happen? By default, CSS grid behaves in a way that gives the

1fr unit a minimum size of auto ( minmax(auto, 1fr) . We can override this
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and force all items to have equal width. ]e default behavior might be good for

some cases, but it’s not always what we want.

.wrapper {
/* other styles */
grid-template-columns: repeat(3, minmax(0, 1fr));

}

Beware that the above will cause horizontal scrolling. See the section on

horizontal scrolling for ways to solve it.

Setting Percentage Values

]e unique thing about CSS grid that it has a fraction unit, which can be

used to divide columns and rows. Using percentages goes against how CSS grid

works.

.wrapper {
display: grid;
grid-template-columns: 33% 33% 33%;
grid-gap: 2%;

}

Using percentage values for grid-template-columns and grid-gap would

cause horizontal scrolling. Instead, use the fr unit.

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-gap: 1rem;

}
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account for another scenario, which is if we don’t want the person’s name to

wrap onto a new line? In this case, text-overflow to the rescue.

.card-meta h3 {
white-space: nowrap;
text-overflow: ellipsis;
overflow: hidden;

}

Wrapping Up

Now that we’ve reached the end of this chapter, I hope you’re more

comfortable with the most common CSS properties and their issues. Of course,

I haven’t mentioned every single property, but I’ve tried to include the things

that you will be addressing in your daily work.

If you’ve gone through the ^rst four chapters carefully, then you will be able

to tackle any CSS issue from the start to ^nish using the techniques you’ve

learned.
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