

Foreword

I've been using, and a big advocate for CSS since before it was even a

standard, nearly 25 years.

It's hard to convey what a profound change it brought in developing for the web

when introduced, although its widespread adoption took years of the technology

maturing in browsers, and of advocacy, changing the long established use of tables

for page layout, font elements, and other hacks web developers came up with to

design for the Web.

Since then, CSS has matured in ways its originators and early adopters could barely

imagine and brings developers incredible power. But this power and complexity

come at a cost.

When developing with CSS, I sometimes think of the story of "]e

Sorcerer's Apprentice" (originally a poem by German Romantic poet Goethe, but

made famous by Mickey Mouse in the Disney ^lm Fantasia).]e

Sorcerer's Apprentice gains access to his wizard master's powers, but unable to

wield them correctly, causes mayhem.

Which sounds like a lot of developing with CSS to me!

]e Cascade, Speci^city, Inheritance are all powerful features of CSS, but also

cause many of the problems we associate with the language.

Which is why I'm surprised it's taken so long for someone to really address the

signi^cant challenges of debugging CSS. And why I'm excited for Ahmad's new

book, which addresses this important topic in detail.

I really recommend this to any web developer, it's long over due!

John Allsopp — Web Directions

Table of Contents

Introduction and Overview.. 1
◦]e History of Debugging CSS...2

◦ What Has Changed Today? ..5

◦ What Does Debugging CSS Mean? ..5

◦ Why Debugging Should Be Taught..6

◦]e Debugging Mindset ...6

◦ Why Debugging Needs Time..8

◦ Write Code]at Is Easy To Debug ..9

◦ Who Is]is Book For? ..9

◦ Why I Wrote]is Book? ...10

◦ An Overview of the Book Chapters ..10

Introduction to CSS Bugs ... 11
◦ What Is a Bug? ...12

◦ How to Fix a CSS Bug..12

◦ CSS Bug Types..14

◦]e Debugging Process ...23

◦ Wrapping Up..25

Debugging Environments and Tools .. 26
◦ Toggling a CSS Declaration ..28

◦ Using the Keyboard to Increment and Decrement Values.........................30

◦ CSS Errors ..31

◦ DevTools Mobile Mode...32

◦ Mobile Mode Doesn’t Show a Horizontal Scrollbar33

◦ Scroll Into View ...34

◦ Screenshotting Design Elements ..34

◦ Device Pixel Ratio ...35

◦ Switching the User Agent ..36

◦ Debugging Media Queries..38

◦ Box Model ..47

◦ Computed CSS Values...50

◦ Grayed-Out Properties..52

◦ Firefox’s Style Editor ...54

◦ CSS Properties]at Don’t Have an E`ect ..55

◦ Compatibility Support in Firefox ..56

◦ Getting the Computed Value While Resizing the Browser56

◦ Getting the Computed Value With JavaScript ...57

◦ Reordering HTML Elements ..59

◦ Editing Elements in the DevTools...62

◦]e H Key..67

◦ Forcing an Element’s State...67

◦ Debug an Element Shown Via JavaScript ...71

◦ Break JavaScript...74

◦ Using the Debugger Keyword..75

◦ Formatting the Source Code to Be Easier to Read.......................................76

◦ Copying an Element’s HTML Along With Its CSS77

◦ Rendered Fonts ...78

◦ Checking for Unused CSS ..79

◦ Color-Switching With the DevTools ...80

◦ Copying CSS From the DevTools to the Source Code81

◦ Debugging Source-Map Files ...83

◦ Debugging Accessibility Issues Caused by CSS ...84

◦ Debugging CSS Performance..88

◦ Multiple Browser Pro^les...90

◦ Rendering and Emulation..91

◦ Virtual Machines...94

◦ Online Services ...95

◦ Mobile Devices ..95

◦ Mobile Browsers..96

◦ Inspecting Your Mobile Browser ...96

◦ Mobile Simulators...96

◦ Browser Support..97

◦ Can I Use..97

◦ Vendor Pre^xes..98

◦ Wrapping Up..99

CSS Properties 8at Commonly Lead to Bugs.. 100
◦ Box Sizing...101

◦ Display Type ..102

◦ Margin ..114

◦ Padding...117

◦ Width Property..121

◦ Height Property...126

◦ Setting a Minimum or Maximum Width..132

◦ Shorthand vs. Longhand Properties ...145

◦ Positioning...148

◦]e Z-Index Property ..151

◦]e calc() Function ...157

◦ Text Alignment..157

◦ Viewport Units ..158

◦ Pseudo-Elements ..159

◦ Color ...163

◦ CSS Backgrounds...165

◦ CSS Selectors ...167

◦ CSS Borders..172

◦ Box Shadow..179

◦ CSS Transforms ...186

◦ CSS Custom Properties (Variables) ...192

◦ Horizontal Scrolling..196

◦ Transition...207

◦ Over_ow...210

◦ Text Over_ow ..214

◦]e !important Rule..215

◦ Flexbox ...216

◦ CSS Grid ...235

◦ Handling Long and Unexpected Content ..243

◦ Wrapping Up..99

Breaking a Layout Intentionally... 247
◦ Add Long Text Content ..248

◦ Try Content in Di`erent Languages ...251

◦ Resize the Browser’s Window..252

◦ Avoid Placeholder Images ..254

◦ Open in Internet Explorer..256

◦ Rotate Between Portrait and Landscape Orientation257

◦ Wrapping Up..99

Browser Inconsistencies and Implementation Bugs................................... 259
◦ Using a CSS Reset File ..260

◦ Using Normalize.css ...261

◦ Browser Implementation Bugs..226

◦ Test-Case Reduction ...263

◦ Make It Fail ..267

◦ Back Up Your Work ...268

◦ Document Everything ..268

◦ Test and Iterate ...269

◦ Research the Issue ..269

◦ Report to Browser Vendors ..270

◦ Never]row Away a Debugging Demo ..270

◦ Regression Testing ..271

◦ Wrapping Up..99

General Tips and Tricks... 275
◦ Debugging Multilingual Websites ...276

◦ Using @supports ..278

◦ Browser Extensions ..280

◦ Mocking Up in the Browser...282

◦ Hover for Touch Screens ..289

◦ Using CSS to Show Potential Errors..290

Let’s face it:]e process of debugging CSS is not straightforward, because there

is no direct or clear way to debug a CSS problem. In this book, you will learn

how to sharpen your debugging CSS skills.

For traditional programming languages, such as Java, C, and PHP, the

techniques of debugging have evolved over the years.]at is not the case with

CSS. Debugging CSS is not like debugging a programing language because you

won’t be alerted to errors at compilation time. You would get silent errors,

which are not helpful.

Before debugging a CSS error, you need to spot it ^rst. In some cases, you

might receive a report from a colleague that there is a bug to be solved. Finding

a CSS bug can be hard because there is no direct way to do it. Even for an

experienced CSS developer, debugging and ^nding CSS issues can be hard and

confusing.

]is chapter will discuss:

• the history of debugging CSS,

• what has changed today,

• what debugging CSS means,

• the debugging mindset,

• why debugging needs time,

• an overview of this book’s topics.

The History of Debugging CSS

Because this book is about debugging and ^nding CSS issues, you should be

aware of a bit of the history of how debugging tools for CSS have developed

over the years.

1. Introduction and Overview

2 Debugging CSS

Style Master

You might be surprised to hear that the ^rst CSS debugging tool was released

in 1998 — 22 years ago! Its creators, John Allsopp and Maxine Sherrin, named

it Style Master. As they described it:

Style Master is the leading cross-platform CSS development tool. Much

more than just a text editor, Style Master supports your work_ow —

including: creating style sheets based on your HTML; live CSS editing of

PHP, ASP.NET, Ruby and other dynamically generated sites; editing CSS

via ftp; and much, much more.

]e goal of Style Master was to make working with CSS more eacient, more

productive, and more enjoyable. As you can see, then, debugging CSS has been

a topic of interest to developers for a long time.

1. Introduction and Overview

Debugging CSS 3

http://westciv.com/style_master/index.html

Every modern web browser has development tools, or DevTools, built in. In

the history section, I explained a bit about the tools Style Master and Firebug.

Browser DevTools are based on these projects. To open yours, right-click and

select “Inspect element” from the menu. If you’re a keyboard person, here are

the shortcuts for each browser:

• Chrome: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

• Firefox: ⌥ + ⌘ + C on a Mac, and Ctrl + Shift + I on Windows

• Safari: ⌥ + ⌘ + I

• Edge: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

I will be using Google Chrome in this book, unless I mention another web

browser.

You can inspect any element and toggle its CSS properties. To select an

element, right-click and choose “Inspect” from the menu.

When you select “Inspect”, the browser’s DevTools will open at the bottom of

the screen.]at’s the default position for it. You can pin it to the right or left

side of the screen by clicking on the dots icon in the top right.

3. Debugging Environments and Tools

Debugging CSS 27

With the dots clicked, a little dropdown menu will open. You can choose where

to pin the DevTools.]ere is no right place; choose based on your preference.

However, you will need to dock it to the right when you are testing at mobile

and tablet sizes.]is is how it looks:

Toggling a CSS Declaration

We’ve opened the DevTools and know how to access them. Let’s inspect an

3. Debugging Environments and Tools

28 Debugging CSS

span {
padding-top: 1rem;
padding-bottom: 1rem;

}

]is won’t work. Vertical padding doesn’t work for inline elements. You would

have to change the element’s display property to inline-block or block .

]e same goes for margin :

span {
margin-top: 1rem;
margin-bottom: 1rem;

}

]is margin won’t have an e`ect. You would have to change the display type

to inline-block or block .

Spacing and Inline Elements

Each inline element is treated as a word. Take the following:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 103

Hello
World

]is will render Hello World . Notice the spacing between the two words.

Where did this come from? Well, because an inline element is treated as a

word, the browser automatically adds a space between words — just like there

is a space between each word when you type a sentence.

]is gets more interesting when we have a group of links:

]e links are next to each other, with a space between them.]ose spaces

might cause confusion when you’re dealing with inline or inline-block

elements because they are not from the CSS — the spaces appear because the

links are inline elements.

Suppose we have an inline list of category tags, and we want a space of 8 pixels

between them.

<li class="tag">Food
<li class="tag">Technology
<li class="tag">Design

In the CSS, we would add the spacing like this:

4. CSS Properties That Commonly Lead to Bugs

104 Debugging CSS

.tag {
display: inline-block;
margin-right: 8px;

}

You would expect that the space between them would equal 8 pixels, right?

]is is not the case.]e spacing would be 8 pixels plus an additional 1 pixel
from the character spacing mentioned previously. Here is how to solve this

issue:

ul {
display: flex;
flex-wrap: wrap;

}

By adding display: flex the the parent, the additional spacing will be gone.

Block Elements

]e block display type is the default for certain HTML elements, such as div ,

p , section , and article . In some cases, we might need to apply the block

display type because an element is inline, such as:

• form labels and inputs,

• span and a elements.

When display: block is applied to span or a , it will work ^ne. However,

when it’s applied to an input, it won’t a`ect the element as expected.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 105

input[type="email"] {
display: block; /* The element does not take up the full width. */

}

]e reason is that form elements are replaced elements. What is a replaced

element? It’s an HTML element whose width and height are prede^ned,

without CSS.

To override that behavior, we need to force a full width on the form element.

input[type="email"] {
display: block;
width: 100%;

}

]ere are replaced elements other than form inputs, including video , img ,

iframe , br , and hr . Here are some interesting facts about replaced

elements:

• It’s not possible to use pseudo-elements with replaced elements. For

example, adding an :after pseudo-element to an input is not possible.

•]e default size of a replaced element is 300 by 150 pixels. If your page

has an img or an iframe and it doesn’t load for some reason, the browser

will give it this default size.

Consider the following example:

4. CSS Properties That Commonly Lead to Bugs

106 Debugging CSS

height: 0 is set on the element.

Transitioning Visibility and Display

Transitioning the display property of an element is not possible. However,

we can combine the visibility and opacity properties to mimic hiding an

element in an accessible way.

Here we have a menu that should be shown on mouse hover and keyboard

focus. If we used only opacity to hide it, then the menu would still be there

and its links clickable (though invisible).]is behavior will inevitably lead to

confusion. A better solution would be to use something like the following:

.menu {
opacity: 0;
visibility: hidden;
transition: opacity 0.3s ease-out, visibility 0.3s ease-out;

}

.menu-wrapper:hover .menu {
opacity: 1;
visibility: visible;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 209

random bugs on Safari iOS.

Inline-Block Elements With overflow: hidden

According to the CSS speci^cation:

]e baseline of an “inline-block” is the baseline of its last line box in the

normal _ow unless it has either no in-_ow line boxes or if its “over_ow”

property has a computed value other than “visible”, in which case the

baseline is the bottom margin edge.

When an inline-block element has an overflow value other than visible ,

this will cause the bottom edge of the element to be aligned according to the

text baseline of its siblings.

To solve this, change the alignment of the button that has overflow: hidden .

.button {
vertical-align: top;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 213

]e d-block class sets the element to display as a block type. Adding

!important ensures it will be applied as expected.

Flexbox

]e _exbox layout module provides us with a way to lay out a group of items

either horizontally or vertically.]ere are many common issues with _exbox:

Some are done mistakenly by the developer, and others are bugs in a browser’s

implementation.

User-Made Bugs

Forgetting flex-wrap

When setting an element as a wrapper for _exbox items, it’s easy to forget

about how the items should wrap. Once you shrink the viewport, you notice

horizontal scrolling.]e reason is that _exbox doesn’t wrap by default.

<div class="section">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.section { display: flex; }

4. CSS Properties That Commonly Lead to Bugs

216 Debugging CSS

Notice how the items aren’t wrapping onto a new line, thus causing horizontal

scrolling.]at is not good. Always make sure to add flex-wrap: wrap .

.section {
display: flex;
flex-wrap: wrap;

}

Using justify-content: space-between for Spacing

When we use _exbox to make, say, a grid of cards, using justify-content:

space-between can be tricky.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 217

]e grid of cards above is given space-between , but notice how the last row

looks weird? Well, the designer assumed that the number of cards would

always be a multiple of four (4, 8, 12, etc.).

CSS grid is recommended for such a purpose. However, If you don’t have any

option but to use _exbox to create a grid, here are some solutions you can use.

Using Padding and Negative Margin

<div class="grid">
<div class="grid-item">

<div class="card"></div>
</div>
<!-- + 7 more cards -->

</div>

4. CSS Properties That Commonly Lead to Bugs

218 Debugging CSS

.recipe { display: flex; }

img { width: 50%; }

A simple online search reveals that this issue is common, and it has

inconsistent browser behavior.]e only browser that still stretches an image

by default is Safari version 13. To ^x it, we need to reset the alignment of the

image itself.

.recipe img { align-self: flex-start; }

While Safari version 13 is the only one that has the inconsistent behavior of

stretching the image, the button element is stretched in all browsers.]e ^x

is the same (align-self: flex-start), but small details like this make you

think about the weirdness of browsers.

We see a related problem when a _ex wrapper has its direction set to column .

<div class="card">
<h2 class="card__title"></h2>
<p class="card__desc"></p>

</div>

4. CSS Properties That Commonly Lead to Bugs

222 Debugging CSS

.card {
display: flex;
flex-direction: column;

}

]e .card__category element will stretch to take up the full width of its

parent. If this behavior is not intended, then you’ll need to use align-self to

force the span element to be as wide as its content.

.card__category {
align-self: flex-start;

}

Flexbox Child Items Are Not Equal in Width

A common struggle is getting _exbox child items to be equal in width.

According to the speci^cation:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 223

]e great thing is that the “_ex” label is clickable. When it’s clicked, Firefox will

highlight the _ex layout items. It can also be accessed from the little _exbox

icon beside the CSS declaration in the “Rules” panel.

]e highlight is useful when you’re in doubt of how a _exbox layout works.

Take advantage of these tools — they enable you to make sure that nothing

weird is happening and clear up any confusion about a _exbox container.

4. CSS Properties That Commonly Lead to Bugs

234 Debugging CSS

CSS Grid

Unintentional Implicit Tracks

A common misstep with CSS grid is to create an additional grid track by

placing an item outside of the grid’s explicit boundaries. First, what’s the

di`erence between an implicit and explicit grid?

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr;

}

.item-1 {
grid-column: 1 / 2;

}

.item-2 {
grid-column: 3 / 4;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 235

]e .item-1 element has an implicit grid track, and it’s placed within the

grid’s boundaries.]e .item-2 element has an explicit grid track, which

places the element outside of the de^ned grid.

CSS grid allows this.]e problem is when a developer is not aware that an

implicit grid track has been created. Make sure to use the correct values for

grid-column or grid-row when working with CSS grid.

A Column With 1fr Computes to Zero

]ere is a case in which a column with 1fr will compute to a width of 0 ,

which means it’s invisible.

<div class="wrapper">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.wrapper {
display: grid;
grid-template-columns: repeat(3, minmax(50px, 200px)) 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

We have three items with a minimum of 50 pixels and a maximum of 200

pixels.]e last item should take the remaining space, 1fr . If the sum of the

widths of the ^rst three items is less than 600 pixels, then the last column will

be invisible if:

4. CSS Properties That Commonly Lead to Bugs

236 Debugging CSS

• it has no content at all,

• it has no border or padding.

Keep that in mind when working with CSS grid.]is issue might be confusing

at ^rst, but when you understand how it works, you’ll be ^ne.

Equal 1fr Columns

You might think that the CSS grid fraction unit, fr , works as a percentage. It

doesn’t.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">Item 2</div>
<div class="item">Item 3</div>

</div>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 237

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

]e items look equal. However, when one of them has a very long word, its

width will expand.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">I’m special because I have

averylongwordthatmightmakemebiggerthanmysiblings.</div>
<div class="item">Item 3</div>

</div>

Why does this happen? By default, CSS grid behaves in a way that gives the

1fr unit a minimum size of auto (minmax(auto, 1fr) . We can override this

4. CSS Properties That Commonly Lead to Bugs

238 Debugging CSS

and force all items to have equal width.]e default behavior might be good for

some cases, but it’s not always what we want.

.wrapper {
/* other styles */
grid-template-columns: repeat(3, minmax(0, 1fr));

}

Beware that the above will cause horizontal scrolling. See the section on

horizontal scrolling for ways to solve it.

Setting Percentage Values

]e unique thing about CSS grid that it has a fraction unit, which can be

used to divide columns and rows. Using percentages goes against how CSS grid

works.

.wrapper {
display: grid;
grid-template-columns: 33% 33% 33%;
grid-gap: 2%;

}

Using percentage values for grid-template-columns and grid-gap would

cause horizontal scrolling. Instead, use the fr unit.

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-gap: 1rem;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 239

account for another scenario, which is if we don’t want the person’s name to

wrap onto a new line? In this case, text-overflow to the rescue.

.card-meta h3 {
white-space: nowrap;
text-overflow: ellipsis;
overflow: hidden;

}

Wrapping Up

Now that we’ve reached the end of this chapter, I hope you’re more

comfortable with the most common CSS properties and their issues. Of course,

I haven’t mentioned every single property, but I’ve tried to include the things

that you will be addressing in your daily work.

If you’ve gone through the ^rst four chapters carefully, then you will be able

to tackle any CSS issue from the start to ^nish using the techniques you’ve

learned.

4. CSS Properties That Commonly Lead to Bugs

246 Debugging CSS

Acknowledgements

]e book idea started as a note in April 2020. I asked Kholoud, my wife, what

do you think about writing a book about debugging CSS? I told her that it will

be a very short one (60 pages max). Seven months later, the book has 300

pages. Kholoud was the ^rst person to support the book idea, and she insisted

that I should move on with this, and here we are.]ank you, my dearest

person!

]e ^rst person that encouraged me from the community is Mr. John Allsopp.

He invited me to talk at Web Directions conference about the book topic and

was one of the ^rst supporters.]ank you very much!

I want to thank is Geo`rey Crofte. He was helpful and kind enough to

proofread the whole book, and highlighting a lot of ^xes.]ank you very

much!

Finally, I would like to thank Bram Van Damme, who reviewed the very

^rst draft of the book. He highlighted some important things that I should

improve.]ank you, Bram!

Debugging CSS 293

	Foreword
	Table of Contents

	Introduction and Overview
	The History of Debugging CSS
	Style Master
	Firebug Browser Extension

	What Has Changed Today?
	What Does Debugging CSS Mean?
	Why Debugging Should Be Taught
	The Debugging Mindset
	Identifying CSS Bugs
	Explaining a Bug to Someone

	Why Debugging Needs Time
	An Issue Is Not Clear
	The Symptoms Are Easier to Treat Than the Cause
	Focusing on One Path to the Problem
	Ignoring Side Effects

	Write Code That Is Easy To Debug
	Who Is This Book For?
	Why I Wrote This Book?
	An Overview of the Book Chapters

	Introduction to CSS Bugs
	What Is a Bug?
	Browsers Are Different

	How to Fix a CSS Bug
	Check the CSS
	Check Browser Support
	Use the Browser’s Developer Tools

	CSS Bug Types
	Visual Design Bug Types
	Technical Bug Types
	Calling an Incorrect File Path
	Misnaming a Property
	Using an Invalid Value for a Property
	Using a Property That Depends on Another
	Overriding One Property With Another
	Duplicating a Property
	Incorrectly Typing a Class Name
	Neglecting the Cascade
	Forgetting to Bust the Cache
	Neglecting Performance
	Ignoring Specificity

	The Debugging Process
	Getting Browser Information From Non-Technical People
	Debugging Techniques

	Wrapping Up

	Debugging Environments and Tools
	Toggling a CSS Declaration
	Using the Keyboard to Increment and Decrement Values
	CSS Errors
	DevTools Mobile Mode
	Mobile Mode Doesn’t Show a Horizontal Scrollbar
	Scroll Into View
	Screenshotting Design Elements
	Device Pixel Ratio
	Switching the User Agent
	Debugging Media Queries
	Don’t Forget the Meta Viewport Tag
	The Order of Media Queries Matters
	What If a Media Query Doesn’t Work?
	Avoid Double-Breakpoint Media Queries
	List Media Queries
	Vertical Media Queries Are Important
	Don’t Depend on Browser Resizing Alone

	Box Model
	Everything in CSS Is a Box

	Computed CSS Values
	Grayed-Out Properties
	Firefox’s Style Editor
	CSS Properties That Don’t Have an Effect
	Compatibility Support in Firefox
	Getting the Computed Value While Resizing the Browser
	Getting the Computed Value With JavaScript
	Reordering HTML Elements
	Editing Elements in the DevTools
	CSS Classes
	Utility-Based CSS Websites
	Changing an Element’s Type
	Adding or Removing an Attribute
	Deleting an Element
	Keyboard Goodness

	The H Key
	Forcing an Element’s State
	Select an Element
	Use the Panel
	Toggle the State of an Element

	Debug an Element Shown Via JavaScript
	Is the Element in the HTML?
	Is the Element Added to the HTML on Hover?

	Break JavaScript
	Subtree Modification
	Attribute Modification
	Node Removal

	Using the Debugger Keyword
	Formatting the Source Code to Be Easier to Read
	Copying an Element’s HTML Along With Its CSS
	Rendered Fonts
	Checking for Unused CSS
	Color-Switching With the DevTools
	Copying CSS From the DevTools to the Source Code
	Copy Directly From the Inline Inspector
	Use the changes Feature in Firefox Browser

	Debugging Source-Map Files
	Debugging Accessibility Issues Caused by CSS
	Give the Text Sufficient Color Contrast
	Think Twice Before Hiding With display: none
	Use the Accessibility Tree
	Fix Unclickable Elements

	Debugging CSS Performance
	Multiple Browser Profiles
	Rendering and Emulation
	CSS Print Styles
	CSS Media prefer-color-scheme
	CSS Media prefers-reduced-motion

	Virtual Machines
	Online Services
	Mobile Devices
	Mobile Browsers
	Inspecting Your Mobile Browser
	Mobile Simulators
	Browser Support
	Can I Use
	Vendor Prefixes
	Wrapping Up

	CSS Properties That Commonly Lead to Bugs
	Box Sizing
	Display Type
	Inline Elements
	Spacing and Inline Elements

	Block Elements
	Spacing Below an Image
	The legend Element

	Using display With Positioned Elements
	Alignment of Inline Elements
	An Inline Display Overriding One in a CSS File
	Float and Block Display
	Float and Flex Display
	Showing and Hiding the br Element
	Situations to Avoid the Display Type
	To Hide a Form’s Input Label
	To Style a Checkbox

	Margin
	Margin Collapse
	Margin and Inline Elements
	Just-in-Case Margin
	Centering an Element
	Auto Margin and Positioning
	Auto Margin and Flexbox

	Padding
	Using Padding With Height
	Padding and Inline Elements
	The Padding Shorthand
	Percentage-Based Padding

	Width Property
	Inline Elements Don’t Accept a Width or Height
	Fixed Width Is Not Recommended
	Full Width for Image
	Using 100% vs. auto for Width
	An Image With position: absolute Doesn’t Need Width or Height

	Height Property
	Full Percentage-Based Height
	Filling the Height of the Remaining Space Available
	Percentage-Based Width and No Height
	Height and Viewport Units

	Setting a Minimum or Maximum Width
	Minimum Width
	Minimum Width for Buttons
	Minimum Width and Padding
	Which Has Higher Priority: min-width or max-width?
	Resetting min-width
	Setting to 0
	Setting to initial

	Max Width
	Max Width for Page Wrappers
	Percentage for Maximum Width
	Setting a Maximum Width Based on the Content
	Constraining an Image in a Wrapper
	Resetting max-width
	The none Keyword Value
	The initial Keyword Value
	The unset Keyword Value

	Minimum Height
	Setting a Minimum Height for Variable Content
	Setting a Minimum Height for Positioned Elements

	Maximum Height
	Setting a Maximum Height for Positioned Elements
	Setting a Percentage-Based Maximum Height
	Transitioning an Element’s Height
	Maximum Height Depending on the Element’s Defined Height

	Shorthand vs. Longhand Properties
	Positioning
	Using the Positioning Offset Properties
	Icon Alignment
	Using the width and height Properties
	How Padding Works for Positioned Elements
	Using z-index
	Resetting the Position

	The Z-Index Property
	Forgetting to Set the Position
	Default Stacking Order
	CSS Properties That Create a Stacking Context
	An Element Can’t Appear Above Its Parent’s Siblings
	An Element Floating Above Its Siblings

	The calc() Function
	Text Alignment
	Forgetting to Center a Button’s Content

	Viewport Units
	Using height: 100vh Is Risky

	Pseudo-Elements
	Forgetting the content Property
	Using Width or Height
	Using Pseudo-Elements With Grid or Flexbox
	When to Use ::before and When to Use ::after

	Color
	The transparent Keyword
	Not Taking Advantage of the Cascade
	Forgetting the Hash Notation

	CSS Backgrounds
	The Order of the Background’s Size and Position
	Don’t Use the Shorthand to Set a Color Only
	Dynamic Background
	Forgetting About background-repeat
	Printing CSS and Backgrounds

	CSS Selectors
	Forgetting the Dot Notation for Classes
	Grouping Selectors
	Calling a CSS Selector More Than Once
	Customizing an Input’s Placeholder
	The Order of User-Action Pseudo-Classes
	Targeting an Element With More Than One Class
	Targeting Classes on Particular Elements
	An Alternative to !important

	CSS Borders
	Border on Hover
	Multiple Borders
	Border and currentColor keyword
	Border Transition on Hover
	Changing a Border’s Width Based on Screen Size
	Adding a Border to Text Content
	border: none vs. border: 0
	Focus Outline

	Box Shadow
	A Shadow on One Side of an Element
	box-shadow and overflow: hidden Don’t Mix Well
	Multiple Box Shadows
	White-Space Issue With Box Shadow and Inline Image
	Box Shadow on Header Element
	Shadow on Arrow of Speech Bubble
	An inset Shadow on Image Elements
	Using an Additional HTML Element for the Border
	Using an SVG image

	CSS Transforms
	Applying Multiple Transforms
	The Order of CSS Transforms Matters
	Overriding a Transform by Mistake
	Individual Transform Properties
	Transforming SVG Elements
	Using Transforms to Rotate Text by 90 Degrees

	CSS Custom Properties (Variables)
	Scoped vs. Global Variables
	Setting a Fallback for a Variable
	Retrieving All CSS Variables Defined in a Document
	Invalidation at Computed-Value Time

	Horizontal Scrolling
	Firefox Shows a scroll Label
	Finding Horizontal Scrolling Bugs
	Scrolling to the Left or Right
	Using JavaScript to Get Elements Wider Than the Body
	Using outline

	Fixing Horizontal Scrolling
	A Fixed Width
	A Positioned Element With a Negative Value
	A Flexbox Wrapper Without Wrapping
	A Grid Wrapper With minmax()
	A Long Word or Inline Link
	An Image Without max-width: 100%

	Transition
	Transition on Resize
	Transitioning Height
	Transitioning Visibility and Display

	Overflow
	overflow-y: auto vs. overflow-y: scroll
	Scrolling on Mobile
	Inline-Block Elements With overflow: hidden

	Text Overflow
	The !important Rule
	Flexbox
	User-Made Bugs
	Forgetting flex-wrap
	Using justify-content: space-between for Spacing
	Using Padding and Negative Margin
	Adding Empty Spacer Elements

	Hiding a Flexbox Element in Certain Viewports
	Stretched Images
	Flexbox Child Items Are Not Equal in Width
	Setting the Minimum Width to Zero With Flexbox
	Flex Formatting Context

	Browser Implementation Bugs
	flex-basis Doesn’t Support calc()
	Some HTML Elements Can’t Be Flex Containers
	Inline Elements Not Treated as Flex Items
	Importance Is Ignored in flex-basis When flex Shorthand Is Used
	Centering a Flex Item With margin: auto Doesn’t Work With Flexbox Wrapper Set to Column
	Flex Items Don’t Justify Correctly With max-width

	Firefox’s Flexbox Inspector

	CSS Grid
	Unintentional Implicit Tracks
	A Column With 1fr Computes to Zero
	Equal 1fr Columns
	Setting Percentage Values
	Misusing auto-fit and auto-fill
	Horizontal Scrolling and minmax
	Browser Implementation Issues

	Handling Long and Unexpected Content
	Forgetting to Set Padding Between Text Label and Icon
	Long Name in Media Object
	Solution 1: Float
	Solution 2: Flexbox

	Wrapping Up

	Breaking a Layout Intentionally
	Add Long Text Content
	forceFeed.js
	Install
	Include the Script
	Add Attribute to Elements
	Add the Arrays
	Execute the Script

	Try Content in Different Languages
	Resize the Browser’s Window
	Avoid Placeholder Images
	Open in Internet Explorer
	Rotate Between Portrait and Landscape Orientation
	Wrapping Up

	Browser Inconsistencies and Implementation Bugs
	Using a CSS Reset File
	Using Normalize.css
	Browser Implementation Bugs
	Verify the Bug
	Decide on the Correct Behavior
	Isolate the Bug

	Test-Case Reduction
	Example of Reduced Test Case

	Make It Fail
	Back Up Your Work
	Document Everything
	Test and Iterate
	Research the Issue
	Report to Browser Vendors
	Never Throw Away a Debugging Demo
	Regression Testing
	BackstopJS Configuration File

	Wrapping Up

	General Tips and Tricks
	Debugging Multilingual Websites
	Common Bugs With LTR and RTL
	Spacing Issues
	Alignment Issues
	Debugging RTL
	A Quick Way to Add RTL Content

	Using @supports
	Browser Extensions
	Grid Ruler
	OLI Grid CSS
	Web Developer Extension
	Pesticide Extension

	Mocking Up in the Browser
	Good Ol’ CSS Positioning
	Hiding Design Elements
	CSS Flexbox
	CSS Grid Layout
	CSS Viewport Units
	CSS Columns
	CSS Filters
	Desaturating the Design
	Wireframe Styling

	Hover for Touch Screens
	Using CSS to Show Potential Errors
	Using a CSS Class Out of Context
	Adding width or height Attributes to Elements

	Acknowledgements

